mRNA 帽结构 $2^{\prime}-O$－甲基转移酶说明书

（mRNA Cap 2＇－O－Methyltransferase）

【产品中文名称】mRNA帽结构 2^{\prime}－- －甲基转移酶

【产品英文名称】mRNA Cap 2＇－O－Methyltransferase
【货号信息】

编号	产品组分	货号	包装规格
GMP－MEH－VE101－ 50 kU	mRNA Cap 2＇－O－ Methyltransferase	GMP－MEH－VE101－11	$50 \mathrm{U} / \mathrm{\mu l}, 50 \mathrm{kU}, 1 \mathrm{ml} / \mathrm{vial}$
	$10 \times$ Capping Buffer	GMP－VCS－VE101－21	$1.5 \mathrm{ml} / \mathrm{vial}$
GMP－MEH－VE101－ 5 EMU	mRNA Cap 2＇－O－ Methyltransferase	GMP－MEH－VE101－13	$50 \mathrm{U} / \mathrm{\mu l}, 5 \mathrm{MU}, 100 \mathrm{ml} / \mathrm{vial}$
	$10 \times$ Capping Buffer	GMP－VCS－VE101－23	$250 \mathrm{ml} / \mathrm{vial}$

【表达体系】大肠杆菌
【生产要求】洁净环境（C 级或 D 级）

【产品级别】GMP

【产品简介】mRNA Cap 2＇－O－Methyltransferase 利用 S－腺苷甲硫氨酸（S－Adenosylmethionine，SAM）为甲基供体，在 mRNA 5^{\prime} 末端紧挨 Cap0 帽结构的第一个核苷酸的 $2^{\prime}-\mathrm{O}$ 位置进行甲基化，得到
（m7Gppp5＇mN）Cap1 帽子结构。 本产品是基于公司独特的创新型功能重组蛋白生产平台 SAMS，经过大肠杆菌表达体系与纯化工艺的优化，并按照 GMP 要求生产。

【预期用途】参与 mRNA 疫苗生产过程中的加帽修饰

【储存缓冲液】 20 mM Tris－HCl， $100 \mathrm{mM} \mathrm{NaCl}, 0.1 \mathrm{mM}$ EDTA， 1 mM DTT， 50% Glycerol， 0.1% Triton－X－ 100，pH 8.0

【贮存条件】 $-20 \pm 5^{\circ} \mathrm{C}$
【mRNA Cap 2＇－O－Methyltransferase 质量标准】

项目	可接受标准
鉴别	样品条带与对照品一致
	包装完整，密封性能良好，无渗漏，无破损；溶液澄清
外观	标签信息印刷清晰，正确无误标签潻贴平整，无褶皱或翘起
	装量 50 ml 及以下，每支／瓶中可见异物不得超过 3 个
可萛物	装量 50 ml 以上，每支／瓶中可见异物不得超过 5 个
装量	包装规格为 $1 \mathrm{ml} / \mathrm{vial}$ ，每支／瓶装量不低于 1 ml
	包装规格为 $100 \mathrm{ml} / \mathrm{vial}$ ，每支／瓶装量不低于 100 ml
活性	$\geq 67.7 \mathrm{kU} / \mathrm{ml}$
纯度	$\geq 95.0 \%$
DNA 酶残留	阴性（LOD＝3）
RNA 酶残留	阴性（LOD＝3）
蛋白酶残留	阴性
重金属残留	≤ 10.0 ppm
镍盐残留	$\leq 10.0 \mathrm{ppm}$
细菌内毒素	$\leq 5.0 \mathrm{EU} / \mathrm{ml}$
宿主 DNA 残留	$\leq 100.0 \mathrm{pg} / \mathrm{mg}$
宿主蛋白残留	$\leq 20.0 \mathrm{ng} / \mathrm{mg}$
微生物限度	$\leq 1 \mathrm{CFU} / 10 \mathrm{ml}$
pH 值	8.0 ± 0.5

【 $10 \times$ Capping Buffer 质量标准】

项目	可接受标准
外观	包装完整，密封性能良好，无渗漏，无破损；溶液澄清
	标签信息印刷清晰，正确无误。 标签黏贴平整，无褶皱或翘起
	装量 50 ml 及以下，每支／瓶中可见异物不得超过 3 个

	装量 50 ml 以上，每支／瓶中可见异物不得超过 5 个
	装量
	体积规格为 $1.5 \mathrm{ml} / \mathrm{vial}$ ，每支／瓶装量不低于 1.5 ml
体积规格为 $250 \mathrm{ml} / \mathrm{vial}$ ，每支／瓶装量不低于 250 ml	
DNA 酶残留	阴性（LOD＝3）
RNA 酶残留	阴性（LOD＝3）
蛋白酶残留	阴性
细菌内毒素	$\leq 1.0 \mathrm{EU} / \mathrm{ml}$
重金属残留	$\leq 10.0 \mathrm{ppm}$
微生物限度	$\leq 1 \mathrm{CFU} / 10 \mathrm{ml}$
pH 值	7.8 ± 0.5

【产品使用步骤】
（1）加帽的 RNA 2＇－O 甲基化
a．使用 RNase－free Water 将适量的 Capped RNA 稀释至 16μ l；
b．将稀释好的 RNA 于 $65^{\circ} \mathrm{C}$ 条件下加热处理 5 min ，结束反应后再冰上放置 5 min ；
c．配置反应体系，如下表所示：

组分名称	体积
Denatured Capped RNA	$16 \mu \mathrm{l}$
$10 \times$ Capping Buffer	$2 \mu \mathrm{l}$
SAM $(4 \mathrm{mM})$	$1 \mu \mathrm{l}$
mRNA Cap 2＇- O－Methyltransferase $(50 \mathrm{U} / \mu \mathrm{l})$	$1 \mu \mathrm{l}$

d．将上述混合溶液，于 $37^{\circ} \mathrm{C}$ 下卵育 1 h （针对片段长度＜ 200 nt 的 RNA，可将卵育时间延长至 2 h ）。
（2）一步加帽并 2＇－O 甲基化
a．使用 RNase－free Water 将适量 RNA 稀释至 14μ l；
b．将稀释好的 RNA 于 $65^{\circ} \mathrm{C}$ 条件下加热处理 5 min ，结束反应后再于冰上放置 5 min ；
c．配置反应体系，如下表所示：

组分名称	体积
Denatured uncapped RNA	$14 \mu \mathrm{l}$

$10 \times$ Capping Buffer	$2 \mu \mathrm{l}$
GTP $(10 \mathrm{mM})$	$1 \mu \mathrm{l}$
SAM $(4 \mathrm{mM})$	$1 \mu \mathrm{l}$
Vaccinia Capping Enzyme $(10 \mathrm{U} / \mu \mathrm{l})$	$1 \mu \mathrm{l}$
mRNA Cap 2＇－O－Methyltransferase $(50 \mathrm{U} / \mu \mathrm{l})$	$1 \mu \mathrm{l}$

d．将上述混合溶液，于 $37^{\circ} \mathrm{C}$ 孵育 1 h （针对片段长度＜ 200 nt 的 RNA，可将睹育时间延长至 2 h ）。
提示：以上实验步骤仅建议用于 $10 \mu \mathrm{~g}$ 以内 RNA（ $\geqslant 100 \mathrm{nt}$ ）的甲基化反应，可根据具体实验需求进行放大。

【注意事项】

（1）用于实验参与反应的 RNA 在使用之前，必须进行纯化并溶解于 RNase－free Water，且溶液中不能含有 EDTA 和盐。
（2）反应之前推荐 $65^{\circ} \mathrm{C}$ 加热 5 min 可去除 RNA 的二级结构。如果转录产物的 5^{\prime} 端结构复杂，可将时间延长至 10 min 。
（3）建议使用 Murine RNase Inhibitor，以增强 RNA 在反应中的稳定性。在反应过程中加入 $0.5 \mu \mathrm{l}$ Murine RNase Inhibitor（Cat．No．GMP－RNI－ME101）。

版本号：2023．07．30

